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Abstract
Recent experiments observed coherent quantum oscillations for a system of
Josephson phase qubits and critical-current fluctuators, which demonstrated
the ability to measure two-qubit interactions. Here we propose a new scheme
of manipulations with a system consisting of coupled qubits and fluctuators. In
such a scheme one can, on the one hand, observe quantum coherent Rabi-like
oscillations. On the other hand, the scheme permits us to distinguish responses
from qubits with different eigenvalues. Also, it will be useful for testing the
system and extracting its parameters.

Quantum algorithms can run exponentially faster than their classical analogues [1]. Also, the
information theory in the case of quantum computation can use the advantages of quantum
correction protocols. Since small (of a nanometre scale) systems are governed by the laws
of quantum mechanics, nano-scale components of the hardware have to manifest quantum
behaviour. These features have led researchers to imagine construction of novel types of
information processors. A quantum computation has to be performed through a set of
transformations, gates. A gate applies a unitary transformation to a set of qubits. The latter
can be considered in the simplest case as a two-level system, which is characterized by two
states (‘yes’ and ‘no’ for a qubit), and the energy difference between these states. However,
such a construction of quantum computers represents a formidable scientific and technological
challenge. Quantum integrated circuits have to satisfy the so-called DiVincenzo criteria [2].
First, one needs to have a scalable system in which to encode the information in qubits, that
lives long enough. Second, it must be possible to set the initial state of qubits before each new
computation. Third, each qubit should be isolated enough from the environment to reduce
effects of incoherence. Then, one should be able to manipulate with the states of individual
qubits, and the gate operation time must be shorter than the incoherence time multiplied by
the maximum tolerable error rate. Finally, it must be possible to measure the final state of
qubits once the computation is finished, and to obtain the output of the computation. There
exist sets of universal gates from which any computation can be constructed or approximated
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as precisely as desired, without inventing a new gate each time. Then the problem is to build
such a set of gates that act only on one or two qubits at a time. Many set-ups were proposed
for the realization of a quantum computer, including, just to mention a few of them, cold
trapped atoms (CTAs), nuclear magnetic resonance (NMR), Josephson junctions (JJs), and
electrons in quantum dots (QDs) [3]. Some of the experimental realizations of qubits and gate
operations on them are the nuclear magnetic resonance in a liquid state [4] and in solids [5],
cavity quantum electron dynamics [6], CTA in optical lattices [7], molecular magnets [8],
two-electron quantum dots [9], and Josephson junctions (the latter in charge, phase, and flux
realizations of qubits) [10].

Recent experiments on tunnel JJ qubits detected coherent quantum oscillations, the Rabi
oscillations, in a system of junction resonators [11]. Rabi oscillations are believed to be
the manifestation of the entanglement in a quantum system. Entanglement is, probably, one
of the key features of systems, supposed to serve as quantum computers, while it is absent
in their classical counterparts [1]. The observed oscillations rapidly decay, probably due to
interactions with the environment. A very interesting feature of those oscillations was observed:
the decay rate and the oscillation pattern were significantly suppressed in the vicinity of certain
frequencies. Such a suppression reveals the strongly dependent eigenvalues of the qubit ramped
by external parameters. This phenomenon was interpreted as an influence of some fluctuators
(additional two-level systems) located in the qubit environment [11]. On the other hand, the
experiment [12] detected other coherent quantum oscillations, as the authors believe, different
from the Rabi oscillations. Motivated by those experimental results, in this work we propose
the new scheme of the realization of manipulations with qubits (gates). In fact, it is a novel
approach to the already known proposals [3]. This scheme, on the one hand, satisfies many
of the DiVincenzo criteria in the same way, as other proposals do [3]. On the other hand,
the specific feature of our scheme permits us to measure the response of each qubit (which is
characterized by its own energy distance between the states of the qubit, its eigenvalue).

Basically, the theoretical description of most of the qubits in any of the realizations [3]
is related to two-level systems. Then, the description of gates is connected with unitary
transformations acting on these two-level systems. One of the simplest ways to consider a
two-level system is to investigate some effective quantum spin 1

2 , which two states are related
to two states of the qubit. Then, the Hamiltonian of a model of a qubit can be written as a sum of
Hq = H Sz

q and Hm, where the latter is the ‘manipulation’ part, which describes some effective
ac field with the frequency ω and the magnitude h, Hm ∼ h cos ωt , acting on the qubit. The
two-level system of the fluctuator can be written as Hf = E Sz

f . Then the distances between
levels of the qubit and of the fluctuator are 2H and 2E , respectively. It is natural, then, to
introduce the coupling between the qubit and the fluctuator of the formHqf = u(Sx

q Sx
f + Sy

q Sy
f ),

where 2u is the off-diagonal coupling constant. It was shown recently [13] that the diagonal
interaction between the qubit and the fluctuator does not specifically affect the visibility of
Rabi oscillations as long as the fluctuator is decoupled from the ac field. On the other hand,
the presence of the diagonal coupling can contribute to the decoherence of the qubit via the
random modulation of the Rabi frequency. The total Hamiltonian of the pair, consisting of the
qubit and the fluctuator, has the form H = Hq + Hf + Hqf + Hm.

Let us consider the dynamics of the system, which is described by the HamiltonianH. For
the ‘manipulation’ part we propose to use the form Hm = hSz

q cos ωt , instead of the usually
considered ‘standard geometry’ Hm = hSx

q cos ωt . The dynamics of the quantum system is
described by the Liouville equation for the density matrix ρ:

ih̄ρ̇ = [H, ρ], (1)

where the dot denotes the time derivative. It is convenient to use the fermionic representation of
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the operators of spin projections of the qubit and the fluctuator: Sz
q = 1

2 −a†
qaq, Sz

f = 1
2 −a†

f af ,
S+

q = aq, S+
f = (1 − 2a†

qaq)af , S−
q,f = (S+

q,f )
+. Here S±

q,f = Sx
q,f ± iSy

q,f , and the creation and

annihilation operators a†
q,f and aq,f satisfy standard fermionic anticommutation relations. The

Hamiltonian H in the fermionic representation has the form

H = −(H + h cos ωt)a†
qaq − Ea†

f af

+
u

2
(a†

qaf + a†
f aq) +

H + E + h cos ωt

2
. (2)

Then we can use the representation j z = 1
2 (a†

qaq − a†
f af), j + = a†

qaf , j− = a†
f aq (cf [14]).

It is easy to check that the operators j z and j± satisfy the standard commutation relations for
moments. As for the value of that fictitious moment, one can see that in the subspace with the
basic vectors a†

q,f |0〉 (where aq,f |0〉 = 0, i.e. |0〉 is the vacuum state for fermions) the value

of the fictitious moment is equal to j = 1
2 , while for states |0〉 and a†

qa†
f |0〉 the value of the

fictitious moment is j = 0. Then we can re-write equation (2) in the form

H = −(H − E + h cos ωt) j z + u j x + Hc, (3)

where

Hc = H + E + h cos ωt

2
(1 − a†

qaq − a†
f af). (4)

It is easy to check that [Hc,H] = 0. At t = 0, i.e. without ‘manipulations’, four states
of the considered system of the qubit and the fluctuator have the energies 0, H + E , and
(1/2)[H + E ± √

(H − E)2 + u2].
Now let us use the unitary transformation ρ = U1ρ1U−1

1 , where

U1 = exp

(
i

h

h̄ω
sin ωt j z

)
. (5)

after which the dynamics of the system is determined by the equation ih̄ρ̇1 = [H1, ρ1], where
the effective Hamiltonian H1 is

H1 = Hc + (E − H ) j z +
u

2

[
j + exp

(
i

h

h̄ω
sin ωt

)

+ j−
(

−i
h

h̄ω
sin ωt

)]
= Hc + (E − H ) j z +

u

2

×
∞∑

n=−∞
Jn(h/h̄ω)[ j + exp(inωt) + j−(−inωt)], (6)

where we used the standard series expansion exp(iz sin ωt) = ∑∞
n=−∞ Jn(z) exp(inωt), with

Jn(z) being the Bessel functions.
Following [11–13] we can suppose that u � H, E, |H − E | and H, E, |H − E | ∼ h̄ω. In

this case we can consider the third term in equation (6) as a perturbation. Notice that in such
a case we can use the unitary transformation, after which we have ih̄ρ̇2 = [H2, ρ2], where

U2 = exp(−imωt j z), (7)

and the effective Hamiltonian H2 is equal to

H2 ≈ Hc + (|H − E | − mh̄ω) j z +
u

2
J−m(h/h̄ω)

× [ j + exp(−imωt) + j− exp(imωt)] + · · · . (8)

Here we exactly consider only resonance terms, which are distinguished from others by the
condition |H − E | = mh̄ω (where m = 1, 2, 3, . . .). For those terms there exist zero
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denominators in the perturbation series. Other, non-resonance, terms can be taken into account
in the framework of a standard perturbation theory. It is easy to see that the population
nq = 〈a†

qaq〉 of the qubit (and similar for the fluctuator) is an oscillating function with the
frequency ω, and with the frequency of Rabi-like coherent quantum oscillations u Jm(mh/h̄ω).
For example, we obtain for the change of the difference of the occupancies, caused by the
‘manipulation’ in resonance

δ(nq − nf) ≡ 2δ〈Sz
q〉 ∼ H

h̄ω
f (T )

× sin2

(
u Jm(mh/|H − E |)

2h̄
t

)
, (9)

where T is the temperature, f (0) = 1, and for T �= 0 we have

f (T ) = sinh(h̄ω/2T )

cosh(h̄ω/2T ) + cosh[(H + E)/2T ]

∣∣∣∣
h̄ω≈|H−E |

≈ 1

2

[
tanh

H

T
− tanh

E

T

]
.

The frequency of Rabi-like oscillations is determined by the magnitude of the ac field h.
For m = 1 (i.e., if |H − E | = h̄ω) we have J1(h/h̄ω) ≈ h/h̄ω for the reasonable situation
of the qubit in resonance h � h̄ω. Hence, in this case one can observe the Rabi oscillations
of the populations of the qubit and the fluctuator with the frequency hu/h̄2ω. On the other
hand, one can see that near the resonance mh̄ω = |H − E |, the ratio mh/|H − E | oscillates
with the change of the magnitude h according to the change of the Bessel function. When
Jm(h/h̄ω) passes zero, the frequency of the Rabi-like quantum coherent oscillations and the
total response both go to zero, i.e., we have modulations of the coherent frequency, depending
on the frequency of the ‘manipulation’ ω, and eigenvalues of the qubit H and the fluctuator
E . This is reminiscent of the situation observed in experiments on Josephson tunnel junction
qubits [11, 12]. Notice that beating can exist if one considers H ∼ E , at which situation the
oscillations of the qubit interfere with the oscillations of the fluctuator (which seems to be the
case of [11, 13]).

To be closer to the experimental situation, we can phenomenologically introduce the
relaxation to the problem. Equations of motion for the average values of the fictitious moment
in the presence of relaxation can be written (cf [14])

h̄〈 j̇ z〉 = ( j z
0 − 〈 j z〉)h̄γ1 − iC(〈 j +〉 − 〈 j−〉),

h̄〈 j̇ +〉 = −h̄γ2〈 j +〉 + i�〈 j−〉 + 2iC〈 j z〉,
h̄〈 j̇−〉 = −h̄γ2〈 j−〉 − i�〈 j +〉 − 2iC〈 j z〉,

(10)

where � ≈ |H − E | − mh̄ω, C = u Jm(h/h̄ω), and we introduced the energy relaxation
and the dephasing with the characteristic rates γ1 and γ2, respectively. Observe that the form
of equation (10) implies that we have the relaxation to the state in which 〈 j z〉 = j z

0 . It is
natural to suppose that this equilibrium value is determined by the Gibbs distribution with
the Hamiltonian H taken at h = 0. One can use, though, the relaxation to different values
of 〈 j z,±〉, e.g., to their values taken at some time, where they will be determined by h and
ω also. The solution of the set of equations (10) is straightforward. One can see that for
t � γ −1

1,2 we obtain essentially equation (9). At t 	 γ −1
1,2 , where we can omit the left-hand

sides of equation (10), the magnitude of coherent quantum Rabi-like oscillations decays as
exp(−γ1,2t), and populations of the levels of the qubit and the fluctuator oscillate in that
steady-state regime with the only frequency of the ‘manipulation’, ω. In the intermediate
regime, t ∼ γ1,2, we obtain the decaying coherent quantum oscillations. In figure 1 the time
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Figure 1. Time dependence of the ground state difference in populations of the qubit and the
fluctuator in resonance with the ‘manipulation’ frequency (arbitrary units). The solid line pertains
to the case h̄ω = |H − E|, i.e. m = 1 and h/|H − E| = 1; the dashed curve corresponds to the
case 5h̄ω = |H − E| (m = 5). The dotted line describes the case h̄ω = |H − E| (m = 1), but
with h/|H − E| = 0.1.

dependence of the difference in populations of the qubit and the fluctuator are presented (the
populations of the qubit and the fluctuator themselves oscillate analogously). Here we used
the values h̄ = 1, γ = 0.01, and u = 0.1 (cf [11–13]). Results are presented for the resonance
case |H − E | = mh̄ω and different values of E and H (cf [12, 13]). One can clearly observe
decaying coherent quantum oscillations with different frequencies,depending on the resonance
conditions. In the case of large m (i.e., smaller frequencies of the ‘manipulation’), the period
of quantum coherent oscillations becomes larger.

One can see the similarity with the situation observed in [11, 12]. In the steady-state
regime the power of the ac field, absorbed by the qubit and the fluctuator, is in resonance

Q ∼ h2ω
sinh(h̄ω/2T )

cosh(h̄ω/2T ) + cosh[(H + E)/2T )]

h̄γ2

(h̄γ2)2 + �2 + 4(γ2/γ1)C2
. (11)

Obviously, the coherent quantum oscillations, studied above, are directly related to the
entanglement in the considered quantum system. The magnitudes and frequencies of those
oscillations are determined not only by the eigenvalues of the qubit and the fluctuator, but also
by the interaction between them.

We can consider a number of coupled qubits and oscillators. For this purpose, let us
mark the operators of the qubit and the fluctuator by the index n (i.e., Sx,y,z

q,f → Sx,y,z
q,f,n ). Then

we can introduce the interaction between neighbouring qubits and oscillators of the form
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v
∑

n(Sx
f,n Sx

q,n+1 + Sy
f,n Sy

q,n+1). We consider such an interaction only for simplicity, to have
an exactly solvable model, cf [14]. On the other hand, other forms of interactions between
qubits and fluctuators can be studied in the framework of the mean-field-like theory [15].
Then, after the Jordan–Wigner transformation, followed by the Fourier transformation, we
can again diagonalize the time-independent part of the Hamiltonian. Again, we can use
the fact that the interactions u and v are small compared to the eigenvalues of qubits and
fluctuators u, v � H, E, |H − E |, and H, E, |H − E | ∼ h̄ω. Then, equation (10) describes
the time dependence of the considered system of coupled qubits and fluctuators, with the
changes 〈 j z,±〉 → 〈 j z,±

k 〉, j z
0 → j z

0,k , � → �k = √
(H − E)2 + u2 + v2 + 2uv cos k − h̄ω

and C → Ck = |u + v exp(ik)|Jm(h/h̄ω). Now it is easy to see why we support our scheme of
‘manipulation’. For a set of coupled qubits and fluctuators, one expects each qubit to have its
own eigenvalue (in our above consideration this corresponds to the case with different values
of k). The resonance conditions

√
(H − E)2 + u2 + v2 + 2uv cos k ≈ |H − E | = mh̄ω will

distinguish the number of harmonics m being in resonance modes, related to each qubit and
fluctuator. For example, the difference in populations of the qubit and fluctuator with the
quasi-momentum k, caused by the ‘manipulation’, is equal in resonance at t ∼ γ −1 to

δ(nq,k − nf,k) ∼ H

h̄ω
exp(−γ t)

× sin2

(√
u2 + v2 + 2uv cos k Jm(mh/|H − E |)

2h̄
t

)

× sinh(h̄ω/2T )

cosh(h̄ω/2T ) + cosh[(H + E)/2T ]
+ constant, (12)

where we used γ as the maximal value of the rates of relaxation in the system. Observing
different modulations for Rabi-like coherent quantum oscillations related to different qubits
(for different modes one can expect a different behaviour of zeros of frequencies) one can
distinguish the responses from qubits. It turns out that in many experiments on Rabi-like
coherent oscillations of qubits not only two-level systems, but also three-level systems, were
used. Our scheme can be adopted for such a case, too (cf [16]).

Let us discuss the advantages of our proposal. In the proposed scheme the same quantum
computation algorithms [1] can be used as in the standard scheme. Moreover, the proposed
scheme does not change the subject of application (in the mentioned context it is the set
of Josephson junctions), i.e., it satisfies the first and third DiVincenzo criteria as well as
the previously used scheme. In our proposal the second criterion is satisfied, obviously, by
applying high enough negative voltage H to qubits, which are switched to the initial state.
Here we point out that in the standard scheme (with the ac field directed perpendicular to H )
the operator of manipulationHm ∼ h(t)Sx does not commute with Hq, and, hence, the system
of qubits can be switched to the initial state formally only at H → −∞ for h(t) �= 0. Using
the proposed ‘parallel’ manipulation, one can use the fact that it is possible to measure the
average value of Sz for any h(t) �= 0 in the quantum mechanical sense, while it is impossible
in the standard scheme. Qubits, on the other hand, stay entangled. The main advantage of
our proposal can be seen when considering the fourth and fifth DiVincenzo criteria. (The gate
operation times in our scheme have to be compared with the same relaxation times as in the
standard scheme.) In our scheme, entangled qubits produce normal oscillation modes k. Then,
because of different magnitudes of resonant Bessel functions, one can distinguish between the
responses from (even coupled) qubits, and, hence, manipulate with different qubits. In the
standard scheme it is much more difficult in principle; one can use different harmonics of
the standard resonance to distinguish responses from different entangled qubits; however,
magnitudes of higher harmonics decay very fast). Finally, our proposal will permit us to
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obtain the information about the coupling (entanglement) between qubits and fluctuators u
more directly, comparing to the standard geometry, because resonance responses of all modes
are proportional to that value.

In summary, we have proposed a new scheme of manipulation with the system of coupled
qubits and fluctuators. Such a situation of coupled qubits and fluctuators was studied in recent
experiments on Josephson junction qubits,which observed coherent quantum oscillations of the
populations of qubits. The advantage of the proposed scheme is the possibility to distinguish
the responses from different modes, due to different modulation of the Rabi-like coherent
oscillations of different modes of qubits and fluctuators in resonance. We think that such a
scheme can be very promising for the manipulation with qubits in the quantum computation,
namely when testing systems of coupled qubits and fluctuators, and extracting the parameters
of such systems, like the strength of coupling between qubits and fluctuators.
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